НЕТРАДИЦИОННЫЕ ИСТОЧНИКИ ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ И СПОСОБЫ ЕЕ ПЕРЕДАЧИ

 Детский электромобиль JAGUAR

Детский электромобиль JAGUAR

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Атомная и традиционная энергетика
Энергетика
ПЕРВЫЙ ПРИНЦИП ТЕРМОДИНАМИКИ
Тепловые конденсационные электрические станции
ТУРБИНЫ
КОНДЕНСАТОРЫ
ПАРОГАЗОВЫЕ УСТАНОВКИ
АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ
ВОСПРОИЗВОДСТВО ЯДЕРНОГО ГОРЮЧЕГО
ПЕРСПЕКТИВЫ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ
МАГНИТОГИДРОДИНАМИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ ЭНЕРГИИ
ТЕРМОЭЛЕКТРИЧЕСКИЕ ГЕНЕРАТОРЫ
ЭЛЕКТРОХИМИЧЕСКИЕ ГЕНЕРАТОРЫ
ГЕОТЕРМАЛЬНЫЕ ЭЛЕКТРОСТАНЦИИ
ИСПОЛЬЗОВАНИЕ ВОДНОЙ ЭНЕРГИИ ЗЕМЛИ
НЕТРАДИЦИОННЫЕ ИСТОЧНИКИ
Солнечные электростанции
ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ
ВРЕДНОЕ ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ

Причины появления интереса к нетрадиционным источникам энергии. За последние 10-15 лет существенно возрос интерес к нетрадиционным возобновляемым источникам энергии, к числу которых в первую очередь относятся солнечная, ветровая, геотермальная энергия, энергия биомассы и энергия вод мирового океана. Этот интерес обусловлен главным образом экологической чистотой нетрадиционных возобновляемых источников энергии, и неисчерпаемостью и заботой о сохранении невозобновляемых источников - угля, нефти, и газа в недалеком будущем Определенное значение имеет и научно-технический прогресс в области их применения. Вклад перечисленных источников энергии в мировой энергетический баланс сейчас небольшой и в перспективе оценивается от 1 до 10 % в общем потреблении первичных энергоресурсов в мире, однако эти энергетические установки не только прошли экспериментальный период, но и в большинстве случаев получили массовое внедрение.

Таким образом, перечисленный вид возобновляемых источников энергии а будущем не решает вопроса о замене существующих традиционных невозобновляемых источников, а является дополнительным вкладом в общий энергетический баланс нашей планеты. Учитывая современный уровень развития фундаментальных и прикладных наук в области энергетики, можно сделать вывод, что замена существующих традиционных невозобновляемых источников получения энергии -не неисчерпаемые (в перспективе 21 век) может произойти при использовании одного из двух видов энергии - термоядерного синтеза или солнечной энергии, преобразованной в электрическую на одной из космических станций. Возможно их одновременное развитие и внедрение в большую энергетику.

Классификация нетрадиционных источников энергии. Промышленное получение электрической энергии основано на электромашинном способе, принцип действия которого базируется на законе электромагнитной индукции, открытом Фарадеем в 1831 году Этот способ получения электрической энергии, используемый на теневых, гидравлических м атомных электростанциях, является традиционным. Все другие способы получения электрической энергии, имеющие другую природу по сравнению с электромагнитной индукцией, а также новые способы использования первичных энергоресурсов с сохранением принципа электромагнитной индукции относятся к нетрадиционным) источникам получения электрической энергии. Все нетрадиционные источники получения энергии принадлежат к категории возобновляемых источников с периодом действия на необозримое будущее. Дадим краткую характеристику наиболее перспективным нетрадиционным источникам энергии.

В 80-х годах широкое развитие получила ветроэнергетика, которая пошла по пути создания и производства ветроагрегатов трех классов мощности: до 25 кВт, 55-500 кВт, I МВт и более. Наибольший объем продаж приходится на агрегаты малой мощности, используемые для электроснабжения автономных потребителей, насосных и мелиоративных установок Следует ожидать расширение рынка ветроагрегатов средней мощности, которые находят все большее применение как источники электроснабжения групп потребителей, для совместной работы с действующими энергосистемами и создание так называемых "ветровых ферм". Крупные агрегаты мегаваттного класса пока выпускаются единичными экземплярами, но имеют хорошую перспективу при создании ветроэнергетических систем электроснабжения, когда ветроагрегаты объединяются в I группу параллельно работающих машин Этому классу специалисты предсказывают большое будущее.

Производство электроэнергии в 1989 году всеми действующими в мире ВЭУ оценено примерно в 2,5 млрд. кВт-ч, из них в США вырабатывается 2 млрд. кВт-ч, Дании -291 млн. кВт-ч, Нидерландах - 29, Испании - 9, Швеции и Бельгии по 8 млн. кВт-ч.

Самая мощная в мире ВЭУ с ротором диаметром 64 и высотой 96 м, мощностью 4 МВт работает в Канаде. Наибольших успехов в развитии ветроэнергетики достигли США: суммарная мощность действующих ветроустановок 1500 МВт. Основная част» всех ВЭУ сосредоточена в штате Калифорния, где они обеспечивают более I % потребности • электроэнергии. По отдельным оценкам в Дания к 2000 году за счет ветроэнергетики будет произведено до 10 % всей вырабатываемой в стране электроэнергии. В нашей стране ветроэнергетика находится на начальном периоде развития, хотя в 1930 году а Крыму была сооружена первая в мире ВЭУ мощностью 100 кВт. Во время войны она была разрушена.

Этот вид энергии иногда причисляют к неисчерпаемому, экологически чистому источнику энергии. Принцип использования геотермальной энергии состоит в следующем: Пар , поступающий из недр земли, направляется в теплообменник , после этого очищается в сепараторе и через теплообменник поступает в паровую турбину , которая вращает электрический генератор. Отработанный в паровой турбине пар поступает в конденсатор , откуда конденсат подается в скважину для обратной закачки воды. Поскольку пар из пробуренной скважины имеет температуру в пределах 100-300 °С, то КПД ГеоТЭС ниже, чем ГЭС на органическом топливе, и составляет не более 25 %.

Эксплуатация первой геотермальной электростанции была начата в 1904 г. в итальянском городе Лардерелло В США сосредоточено около 10 % суммарных мировых ресурсов геотермальной энергии, в основном в долине Больших Гейзеров (Калифорния). Большййи геотермальными источниками богата Новая Зеландия, где ГеоТЭС вырабатывается 40 % всей электроэнергии. В Японии большие запасы

геотермальной энергии имеются в районах Мацукава, Огаке, Оникоба. В России геотермальные источники имеются на Камчатке (Паужетские источники) и Курильских островах. Северном Кавказе. В 1976 г. была введена и успешно эксплуатируетcя первая в стране Паужтетская ГеоТЭС на Камчатке мощностью 12 МВт Установленная мощность ГеоТЭС составляет: в США -504 МВт, Италии - 405 МВт, Мексике - 75 МВт, Японии - 43 МВт, России-12 МВт.

Приливные электростанции ПЭС.

В результате сил притяжения, которые действуют между Землей, Луной и Солнцем, возникают приливы и отливы е морях и океанах. Взаиморасположение Земли по отношению к Луне и Солнцу меняется со строгой закономерностью четыре раза в сутки, иа нашей планете происходят приливы и отливы в морях и океанах . В некоторых районах Мирового океана наблюдается очень большая амплитуда приливной волны и разность между верхней и нижними отметками прилива постигает наивысшего значения 19 м у берегов Канады. В России в северных морях Охотском и Беринговом волна достигает 10-13 м. Схема использования приливов и отливов проста. Бухта или устье реки, где приливная волна особенно высока, перегораживается плотиной, в которой монтируются реверсивные гидротурбины, использующие энергию не только приливов, но и отливов. Главным недостатком ПЭС является их вынужденный режим, в зависимости от времени приливов и отливов Несмотря на то, что использование этой энергии проходит начальную стадию технического освоения, в некоторых странах успешно работают приливные электростанции. Самая мощная ПЭС работает во Франции, в провинции Бретань, устье реки Ранс. Ее мощность 240 МВт: В России действует небольшая Кислогубская ПЭС мощностью 400 кВт. Подсчитано, что на мелководной Мезеньской губе, гпе высота приливов достигает 8-9 ч, можно построить ПЭС мощностью до 14 и,лн кВт. Проектируется на берегу Охотского моря Гургайская ПЭС мощностью 6,2 млн. кВт.

Разрабатывается несколько совместных американо-канадских проектов на строительство ПЭС в районе Фанди, знаменитом своими высокими приливами. Изучаются возможности строительства ПЭС в диапазоне мощностей 400-8000 МВт в Великобритании, Канаде, Индии и Южной Корее.

АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ