Солнечные электростанции

 Детский электромобиль JAGUAR

Детский электромобиль JAGUAR

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Атомная и традиционная энергетика
Энергетика
ПЕРВЫЙ ПРИНЦИП ТЕРМОДИНАМИКИ
Тепловые конденсационные электрические станции
ТУРБИНЫ
КОНДЕНСАТОРЫ
ПАРОГАЗОВЫЕ УСТАНОВКИ
АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ
ВОСПРОИЗВОДСТВО ЯДЕРНОГО ГОРЮЧЕГО
ПЕРСПЕКТИВЫ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ
МАГНИТОГИДРОДИНАМИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ ЭНЕРГИИ
ТЕРМОЭЛЕКТРИЧЕСКИЕ ГЕНЕРАТОРЫ
ЭЛЕКТРОХИМИЧЕСКИЕ ГЕНЕРАТОРЫ
ГЕОТЕРМАЛЬНЫЕ ЭЛЕКТРОСТАНЦИИ
ИСПОЛЬЗОВАНИЕ ВОДНОЙ ЭНЕРГИИ ЗЕМЛИ
НЕТРАДИЦИОННЫЕ ИСТОЧНИКИ
Солнечные электростанции
ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ
ВРЕДНОЕ ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ

От "Солнца на Землю направляется тепловой поток, который можно оцепить астрономической цифрой 1,05 10 кВт-ч в год. Непосредственно до земной суши доходит примерно одна пятая его часть. Однако и эта энергия в 30 тыс. раз превышает современное производство электроэнергии во всем мире. Этому энергетическому источнику присущи два недостатка: малая плотность солнечного потока, не превышающего у земной поверхности I кВт на метр , и нерегулируемый приход его к земной поверхности, зависящий от времени года, суток и погоды!

В России и за рубежом определились несколько направлений использования солнечной энергии:

- преобразование солнечного излучения в тепловую энергию с использованием ее для отопления, горячего водоснабжения, кондиционирования воздуха, сушки материалов и продуктов сельского хозяйства, опреснение минерализованной воды и т.п.;

- преобразование солнечное энергии в электрическую с применением термического метода;

создание космических солнечных электростанций.

Рис. 17.1.Структурная схема солнечной электростанции.

Принцип работы наземных солнечных электростанций (рис 5.2), основанных на термодинамическом методе, заключается в постоянном слежении за движением Солнца тысяч гелиостатов - плоских зеркал 2, отражающих падающие на них лучи на приемник 3, находящийся в фокусе этих лучей. Образовавшийся от нагрева пар поступает в накопитель 4, из которого вводится в парогенератор 5. В парогенераторе из первичного пара образуется пар с необходимыми параметрами для паровой турбины 6, От вращающегося генератора 7, находящегося на одном валу с паровой турбиной, электрическая энергия передается в энергосистему. Отработанный пар в турбине поступает в конденсатор 8, откуда в виде конденсата перекачивается в парогенератор, а затем через охлаждающую систему 9 вновь поступает в паровой приемник. Управление гелиостатами Успешному развитию фотоэлектрического метода преобразования солнечной энергии в электрическую в наемных условиях способствовала (благоприятная ситуация в связи с развитием космической техники, ростом потребностей в источниках питания, особенно автономных потребителей небольшой мощности, расположенных в местах, удаленных от централизованных энергосистем. Развитию этого направления также способствовали достижения последних лет в полупроводниковой технике и технологии. Фотоэлектрический метод преобразования стал одним из приоритетных направлений использования солнечной энергии. В этой связи следует коротко остановиться на физических процессах, происходящих в полупроводниковом фотодиоде.

Фотодиод выполнен так, что его р-п переход одной стороной обращен к прозрачному окну, через которое поступает световой поток, с других сторон защищен от воздействия света. Фотодиод может работать двух режимах: фотогенераторном и фотопреобразовательном В фотогенераторном режиме используется фотогальванический эффект, который заключается в следующем. При освещении поверхности фотоэлемента вблизи р-п перехода поглощенные фотоны возбуждают атомы полупроводника и генерируют пары электрон-дырка. Образующиеся электроны под действием электрического поля р-п перехода уходят в слой п, дырки -в слой р. Это приводит к избытку дырок в слое р и электронов в слое п. В результате обе области заряжаются: п-обдасть становится отрицательной, а р-область - положительной. Это приводит к появлению на контактах р и п-областей фотоЭДС, которая может составить десятые доли вольта. Если замкнуть зажимы освещенного фотодиода через резистор Rн (рис 17.1), то я электрической цепи потечет ток.

Наилучшие результаты в области фотоэлектричества достигнуты в США и Японии, Одной из определяющих характеристик возможности широкого использования фотоэлектрических преобразователей в народном хозяйстве является их удельная стоимость. Ведущая фирма США в области солнечных элементов Аrсо Solar предполагает, что их производство к 2000 году достигнет суммарной мощности 400 МВт и стоимость фотодиодов снизится до 10-15 центов за 1 кВт-ч вырабатываемой электроэнергии. Ближайшей задачей является обеспечение в серийном производство КПД фотопреобразователей на монокристаллическом кремнии, равного 12 %, при стабильности параметров в течение 15-20 лет. В перспективе КПД солнечных элементов на кремнии можно повысить до 25 % при обычной освещенности и до 30 % при концентрированном солнечном излучении. Для повышения КПД ставится вопрос о замене кремния арсенидом галлия. В этом случае КПД солнечного элемента получен 26,6 % и ожидается его повышение до 30-35 % По мнению экспертов, ежегодное производство солнечных элементов превысит 600 МВт в 2000г

Предполагается, что в Японии через 20 лет будет производиться фотоэлектрическая система о общей установленной мощностью 4600 МВт.

Активно осуществляется внедрение фотоэлектрических систем в энергетику Европы. Крупнейшая итальянская фирма "Италосоляр" выпускает при автоматизации процессов в год солнечные фотоэлектрические модули общей мощностью 1 МВт. Принципиально важно и то, что потребитель получает не отдельные модули, а фотоэлектрическую систему вместе с электропотребляющим устройством - холодильником, насосом для перекачки воды, телевизором, туристическим домиком. В России выпускается очень мало солнечных элементов, которых хватило пока лишь для того, чтобы покрыть крыши пяти экспертных домов.

Особое место фотоэлектрические установки (солнечные батареи) занимают как бортовые энергетические системы космических аппаратов. За исключением очень небольшого числа спутников, все космические аппараты нуждаются в электроэнергии как для служебных систем, так и для полезной нагрузки. Служебные системы - это системы ориентации, телеметрии, терморегулирования, жизнеобеспечения (на пилотируемых аппаратах), а также бортовые двигательные установки. Полезная нагрузка - научные приборы, ретрансляторы на спутниках связи, оборудование для проведения экспериментов.

Большинство современных космических аппаратов используют, лучистую энергию Солнца, которая с помощью фотоэлементов солнечных батарей преобразуется в электрическую энергию. Если солнце находится в тени Земли, то для этого предусматриваются аккумуляторные батареи Солнечные батареи космических орбитальных станций состоят из крупногабаритных панелей пленочного типа. Основная характеристика панели солнечных батарей — съем электроэнергии с единицы площади и единицы массы. По данным США этот показатель в 1984 г составлял соответственно 125 Вт/м и 25 Вт/кг Сейчас этот показатель значительно выше. Улучшение технических характеристик солнечных батарей осуществляется прежде всего как за счет облегчения конструкций самих панелей, так и за счет монтируемых на них фотоэлементов. Упомянутая панель изготовляется из пленки. В сложенном (рулоном) виде она занимает объем 4,5 х 00,33 х 0,99 м2, в развернутом виде размер панели 332 х 4,1 м2 Развертывание обеспечивает многоэлементная штанга, которая складываете подобно самой панели. Количество тонкопленочных фотоэлементов на западноевропейском спутнике связи “Олимпус” составляет 21500. Наличие солнечных батарей, особенно крупногабаритных, которые должны быть постоянно обращены к Солнцу, налагает большие ограничения на маневренность космических аппаратов.

АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ