КОНДЕНСАТОРЫ

Hx55w читайте здесь.

Пар, выходящий из турбины, направляют для охлаждения и конденсации в специальное устройство, называемое конденсатором. Конденсатор представляет собой цилиндрический корпус, внутри которого имеется большое число латунных трубок. По трубкам протекает охлаждающая вода, поступающая в конденсатор обычно при температуре 10—15°С и выходящая из него при температуре 20—25°С. Пар обтекает трубки сверху вниз, конденсируется и снизу удаляется. Давление в конденсаторе поддерживается в пределах 3—4 кПа, что достигается охлаждением пара.

Расход охлаждающей воды составляет примерно 50—100 кг на 1 кг пара. На электростанции мощностью 1 ГВт расходуется 40 м3/с охлаждающей воды, что примерно равно расходу воды в Москве-реке.

Если воду для охлаждения пара забирают из реки, подают в конденсатор, а затем сбрасывают в реку, то такую систему водоснабжения называют прямоточной. В случаях, когда воды в реке не хватает, сооружают пруд. С одной стороны пруда вода подается в конденсатор, а с другой стороны пруда сбрасывается нагретая в конденсаторе вода.

В замкнутых системах водоснабжения для охлаждения воды, нагретой в конденсаторе, сооружают градирни, представляющие собой устройства высотой примерно 50 м. Вода вытекает струйками из отверстий лотков, разбрызгивается и, стекая вниз, охлаждается. Внизу расположен бассейн, в котором вода собирается и затем насосами подается в конденсатор.

ТЕПЛОВОЙ БАЛАНС КОНДЕНСАЦИОННОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ

На ТЭС происходят многократные преобразования энергии, сопровождающиеся потерями. Экономичность процесса преобразования химической энергии топлива в электрическую и потери на различных стадиях производства можно выявить из анализа теплового баланса электрической станции. Если за 100% принять химическую энергию, получаемую при сжигании угля в топках котлов, то в среднем только 25% той энергии превращается в электрическую (рис. 2.10). Наибольшие потери теплоты происходят в конденсаторе. С охлаждающей водой конденсатора уносится 55% теплоты.

Рис. 2.10. Тепловой баланс конденсационной электрической станции.

Q и Qэл – теплота, полученная при сжигании топлива и теплота, преобразованная в электрическую энергию.

ΔQтб, ΔQтр, ΔQкт – потери теплоты в конденсаторе, турбогенераторе и котельном агрегате соответственно.

3. ГАЗОТУРБИННЫЕ УСТАНОВКИ

На отечественных ТЭС начинают широко использо­вать газотурбинные установки (ГТУ). В качестве рабо­чего тела в них используется смесь продуктов сгорания топлива с воздухом или нагретый воздух при большом давлении и высокой температуре. В ГТУ преобразуется теплота газов в кинетическую энергию вращения ротора турбины.

По конструктивному исполнению и принципу преобразования энергии газовые турбины не отличаются от паровых. Экономичность работы газовых турбин примерно такая же, как и двигателей внутреннего сгорания, а при очень высоких температурах рабочего газа экономичность газовых турбин выше. Кроме того, газовые турбины более компактны, чем паровые турбины и двигатели внутреннего сгорания аналогичной мощности.

Особенно широкое распространение газовые турбины получили на транспорте. Применение газовых турбин в качестве основных элементов авиационных двигателей позволило в современной авиации достичь больших скоростей, грузоподъемности и высоты полета. Газотурболокомотивы на железнодорожном транспорте конкурен­тоспособны с тепловозами, оборудованными поршневы­ми двигателями внутреннего сгорания.

Современные газовые турбины в основном работают на жидком топливе, однако кроме жидкого топлива мо­жет использоваться газообразное: как естественный при­родный горючий газ, так и искусственный газ, получаемый особым сжиганием твердых топлив любых видов.

Представляет практический интерес перспектива сжигания угля в местах его залегания. При этом под землю компрессорами в необходимом количестве подается воздух, производится специальное сжигание угля с образованием горючего газа, который затем подается по трубам к газотурбинным установкам. Впервые в мире такая опытная электростанция построена в Тульской области.

Работа газотурбинной установки осуществляется сле­дующим образом. В камеру сгорания 1 подается жидкое или газообразное топливо и воздух (рис. 3.1, а). Получающиеся в камере сгорания газы 2 с высокой температурой и под большим давлением направляются на рабочие лопатки турбины 3. Турбина вращает электрический генератор 4 и компрессор 5, необходимый для подачи под давлением воздуха 6 в камеру сгорания. Сжатый в компрессоре воздух перед подачей в камеру его сгорания подогревается в регенераторе 7 отработанными в турбине горючими газами 8. Подогрев воздуха позволяет повысить эффективность сжигания топлива в камере сгорания.

Общий вид газотурбинной установки приведен на рис. 3.1.

Рис. 3.1. Принципиальная схема газотурбинной установки:

_ . _ . _ ._ - топливо;

x – x – x – x – - воздух;

. . . . . . . . – продукты сгорания;

АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ