АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ

Первая в мире АЭС была введена в эксплуатацию в г. Обнинске (СССР) 27 июня 1954 г., о чем сообщило Московское радио. Затем сообщение об успешно завершенных работах по созданию первой промышленной электростанции на атомной энергии было передано зарубежными информационными агентствами, прокомментировано радио и прессой, воспринято как сенсация.

На АЭС энергия, получаемая в результате деления я ер урана на осколки, превращается в тепловую энергию пара или газа, затем в электрическую энергию, т. е. в энергию движения электронов в проводнике. Деление ядер урана происходит при бомбардировке их нейтронами, в результате чего получаются осколки ядер, обычно неодинаковые по массе, нейтроны и другие продукты деления, которые разлетаются в разные стороны с огромными скоростями и имеют, следовательно, большие кинетические энергии. Получаемая при делении ядер энергия почти полностью превращается в теплоту. Установка, в которой происходит управляемая цепная ядерная реакция деления, называется ядерным реактором.

Обычные ТЭС принципиально отличаются от АЭС только тем, что рабочее тело на них получает теплоту в парогенераторах при сжигании органического топлива (на АЭС—в ядерных реакторах). Для подогревания воды и превращения ее в пар в ТЭС используется теплота, получаемая при сжигании угля, а в АЭС — теплота, получаемая с помощью управляемой ядерной реакции деления.

Основной элемент станции—ядерный реактор—состоит из активной зоны, отражателя, системы охлаждения, системы управления, регулирования и контроля, корпуса и биологической защиты.

В рабочие каналы активной зоны помещают ядерное топливо в виде урановых или плутониевых стержней, покрытых герметичной металлической оболочкой. В этих стержнях и происходит ядерная реакция, сопровождаемая выделением большого количества тепловой энергии. Поэтому стержни с ядерным топливом называют тепловыделяющими элементами или сокращенно твэлами. Количество твэлов в активной зоне доходит до не скольких

Рис.7.1. Общий вид и схемы работы АЭС:

а – общий вид атомной электростанции: 1 – хранилища топлива;

 2 – реакторные здания; 3 – машинный зал; 4 – электрическая подстанция;

5 – хранилище жидких отходов; б, в, г – схемы работы одно-,

  двух-, трехконтурных АЭС; 1 – реактор с первичной биологической защитой; 2 – вторичная биологическая защита; 3 – турбина;

4 – электрический генератор; 5 – конденсатор или газоохладитель; 6 – насос или компрессор; 7 – регенаритивный теплообменник; 8 – циркуляционный насос; 9 – парогенератор; 10 – промежуточный теплообменник

В активную зону помещают замедлитель нейтронов, через нее также проходит теплоноситель, под которым понимают вещество, служащее для отвода теплоты. В качестве теплоносителя используется обычная вода, тяжелая вода, водяной пар, жидкие металлы, некоторые инертные газы (углекислый газ, гелий). Теплоноситель с помощью принудительной циркуляции омывает в рабочих каналах поверхности твэлов, нагревается и уносит теплоту для дальнейшего использования. Активная зона окружена отражателем, который возвращает в нее вылетающие нейтроны.

Мощность энергетического реактора определяется возможностями быстрого отвода теплоты из активной зоны. Основная часть энергии, выделяющейся при ядерной реакции в твэлах, идет на нагревание ядерного топлива, а небольшая часть—на нагревание замедлителя. Поскольку отвод теплоты происходит за счет конвективного теплообмена, то для повышения его интенсивности следует увеличивать скорость движения теплоносителя. Так, скорость движения воды в активной зоне составляет примерно 3—7 м/с, а скорость газов—30—80 м/с.

Управление реактором производится с помощью специальных стержней, поглощающих нейтроны. Стержни вводятся в активную зону и изменяют поток нейтронов, а следовательно, и интенсивность ядерной реакции.

Теплота, выделяемая в реакторе, может передаваться рабочему телу теплового двигателя (турбины) по одноконтурной (рис. 7.1, б), двухконтурной (рис. 7.1, в) и трехконтурной (рис. 7.1, г) схемам.

Каждый контур представляет собой замкнутую систему. Многоконтурная схема обеспечивает радиационную безопасность и создает удобства для обслуживания оборудования. Выбор числа контуров определяется в зависимости от типа реактора и свойств теплоносителя, характеризующих его пригодность для использования в качестве рабочего тела в турбине.

При работе АЭС по двухконтурной схеме нагретый в реакторе теплоноситель отдает теплоту рабочему телу в парогенераторе. Если в качестве теплоносителя используется вода, то она охлаждается в парогенераторе на 15 — 40°С. Теплоносители в виде жидкостей и газов охлаждаются в парогенераторах значительнее, иногда на несколько сотен градусов.

Первый контур радиоактивен и поэтому целиком наводится внутри биологической защиты. Во втором контуре рабочее тело—вода и пар—нигде не соприкасается : радиоактивным теплоносителем первого контура, поэтому с ним можно обращаться так же, как и на обычных ГЭС.

Рис. 7.2. Схема первой АЭС:

1 – графитовый замедлитель; 2 – стержни реактора; 3 – кольцевой коллектор; 4 – подогреватель; 5 – парогенератор; 6 – пароперегреватель;

7 – турбина; 8 – конденсатор; 9 – насос второго контура;

 10 – компенсатор; 11 – насос первого контура; 12 – стальной кожух;

13 – графитовый отражатель; 14 – бетонная защита

В качестве теплоносителя на первой АЭС используется вода (рис. 7.2). Чтобы в парогенераторе вода первого контура нагревала воду второго контура, превращала ее в пар и при этом не испарялась, в этом контуре используется повышенное давление, так как при этом температура кипения воды также повышается. С увеличением давления температура кипения воды изменяется следующим образом: при р = 101,3 кПа значение Ткип = 100°С, 1 при р = 1013 кПа значение Ткип = 180°С. В графитовый замедлитель помещены подвижные кадмиевые стержни-поглотители, которые автоматически регулируют процесс распада путем большего или меньшего погружения. В теплообменнике используется противоток, что дает возможность нагревать рабочее тело второго контура до 260°С и охлаждать воду первого контура до 130°С.

Биологическая защита выполняет функции изоляции реактора от окружающего пространства, т. е. от проникновения за пределы реактора мощных потоков нейтронов, α-, β-, γ-лучей и осколков деления. Защита реактора выполняется в виде толстого слоя (до нескольких метров) бетона с внутренними каналами, по которым циркулирует вода или воздух для отвода теплоты. Количество этой теплоты равно 3—5% от всей выделенной в реакторе энергии. Из-за относительно низкой температуры оно в дальнейшем не используется.

Защита должна ограничивать уровни излучений до значений, не превышающих допустимых доз как при работе реактора, так и при его останове.

Биологическая защита, в первую очередь, предназначается для создания безопасных условий работы обслуживающего персонала. Поэтому все излучающие устройства (первый контур) помещаются внутри защитной оболочки.

АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ