Детский электромобиль JAGUAR

Детский электромобиль JAGUAR

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат


Математика. Примеры решений контрольной, курсовой, типовых заданий Математика

Функции комплексной переменной

Определение и свойства функции комплексной переменной

 Пусть даны две плоскости комплексных чисел и на первой – множество D комплексных чисел z = x + iy, где i – мнимая единица (i2 = –1), на второй – множество G комплексных чисел w = u +iv.

Если каждому числу  по некоторому правилу f поставлено в соответствие определенное число , то говорят, что на множестве D задана функция комплексной переменной (ФКП), отображающая множество D в множество G. Обозначается: w = f (z).

Множество D называется областью определения ФКП.

Функцию w = f (z) можно представить в виде

f (z) = u(x, y) + iv(x, y),

где u(x, y) – действительная часть ФКП, v(x, y) – мнимая часть ФКП, обе они – действительные функции от x, y.

Пример 1. . Здесь  = x – iy – число, сопряженное числу z= x+iy.

Выделим действительную и мнимую части ФКП:

  u = x2 – y2 – 2x; v = 2xy + 2y.

Вычислим значение функции w в точке z1 = 2 – 3i:

.

Тот же результат получаем непосредственной подстановкой:

.

Говорят, что ФКП f (z) = u(x, y) +iv(x, y) имеет предел в точке z0, равный числу A = a + ib, если . Обозначается: .

Существование предела ФКП w = f (z) при  в означает существование двух пределов: .

  ФКП f (z) = u(x, y) +iv(x, y) называется непрерывной в точке z0, если выполняется условие: .

 Непрерывность ФКП w = f (z) в точке z0 = x0 + iy0 эквивалентна непрерывности функций u(x, y) и v(x, y) в точке (x0, y0).

 

Дифференцирование ФКП. Аналитические ФКП

Производной от функции комплексной переменной w = f (z) в точке z0 называется предел:

,

где , и  произвольным образом.

Функцию w = f (z), дифференцируемую в точке z0 и некоторой ее окрестности, называют аналитической, или регулярной функцией в точке z0.

 Точки, в которых ФКП не является аналитической, называют особыми точками этой функции.

Для того, чтобы функция f (z) = u(x, y) +iv(x, y) была аналитической в области D необходимо и достаточно, чтобы частные производные 1-го порядка функций u(x, y) и v(x, y) были непрерывны в этой области и выполнялись бы условия:

,  (10)

называемые условиями Эйлера-Даламбера, или условиями Коши-Римана.

Теорема (о замене переменной в определенном интеграле)

Пусть функция  определена и непрерывна на ;
функция ,  удовлетворяет условиям:

1)  ; причем , ;

2)   ;

3)   на , т.е. функция  обратима на  – существует обратная функция , :  на ;  на .

Тогда

,

где  – какая-либо первообразная для подынтегральной функции .

Заметим, что если  на  при выполнении остальных условий и , , то пределы интегрирования по  следует поменять местами.

Доказательство. Рассмотрим интеграл  –
интеграл с переменным верхним пределом – сложная функция от

,

т.е. действительно функция  – первообразная для , поэтому

.