Детский электромобиль JAGUAR

Детский электромобиль JAGUAR

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат


Математика. Примеры решений контрольной, курсовой, типовых заданий Математика

Справочный материал к выполнению контрольной работы №2

Тройной интеграл

Вычисление тройного интеграла в декартовых координатах

Пусть функция 3-х переменных u = f (x, y, z) задана и непрерывна в замкнутой области V xOyz. Тройной интеграл от этой функции по области V имеет вид: , где .

Если область V – правильная в направлении оси Oz (рис. 5), то ее можно задать системой неравенств:  где z = z1 (x, y) и z = z2 (x, y) – это уравнения поверхностей, ограничивающих область (тело) V соответственно снизу и сверху (рис. 5).

 Если область D можно задать системой неравенств

  то

В этом случае тройной интеграл от функции u = f (x, y, z) по области V можно вычислить при помощи трехкратного повторного интеграла:

.

Здесь каждый внутренний интеграл вычисляется по «своей» переменной интегрирования в предположении, что переменные интегрирования внешних интегралов остаются постоянными.

Существует всего 6 вариантов сведения тройного интеграла к трехкратному в декартовых координатах (в зависимости от выбранного порядка интегрирования).

 

Вычисление тройного интеграла в цилиндрических координатах

Цилиндрические координаты точки М в пространстве – это ее полярные координаты на плоскости xOy и координата z, т.е. .

Преобразование тройного интеграла по области V к цилиндрическим координатам осуществляется при помощи формул , , .

Если область V задана системой неравенств:

  причем  то V:

Вычисление тройного интеграла по области V в цилиндрических координатах сводится к вычислению трехкратного интеграла в соответствии с записанной системой неравенств для области V:

.

 

 

Некоторые приложения тройных интегралов

 Если подынтегральная функция f (x, y, z) º 1, то тройной интеграл от нее по области V равен мере области интегрирования – объему пространственного тела, занимающего область V: .

Если  – это плотность неоднородного материала (т.е. масса единицы объема), из которого изготовлено тело, то при помощи тройного интеграла можно вычислить массу тела, его статические моменты относительно координатных плоскостей и другие величины. Например, формула для вычисления массы тела имеет вид:

.  (12)

ТЕОРЕМА 1 (достаточное условие существования точки локального экстремума функции)

Если 1)   – непрерывна на  и дифференцируема в ; , кроме возможно точки ;

 2)   или не существует ;

 3) ,  меняет знак в точке  при переходе слева направо через ,

то  имеет локальный экстремум в точке .

Доказательство. Пусть для определенности  на  (имеет знак "+") и  на  (имеет знак "–"). Тогда на  , т.е. ;

на   , т.е. ,

т.е. приращение функции ,  сохраняет знак, в окрестности точки ; а это означает (по определению), что  – точка локального максимума 
функции .

Аналогичные рассуждения в случае смены знака производной  с "–" на "+" при переходе слева направо через стационарную точку  ().

Заметим, что обратное утверждение неверно, т.е. в точке  функция может иметь  (например, ), а производная  меняет знак в бесконечном множестве точек на всякой окрестности точки .

Контрпример. , .