Детский электромобиль JAGUAR

Детский электромобиль JAGUAR

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат


Математика. Примеры решений контрольной, курсовой, типовых заданий Математика

Задание 12. Вычислить интегралы, используя теорему Коши о вычетах:

а) ;

б) .

Решение.

а). Подынтегральная функция имеет внутри контура интегрирования две особые точки  и . Тогда .

Определим вид особых точек и найдем в них вычеты.

, следовательно

, следовательно   - полюс.

Так как , то  - полюс порядка .

.

Таким образом, .

б). Подынтегральная функция имеет внутри контура интегрирования две особые точки  и . Тогда .

Так как  и  - полюсы первого порядка, то для вычисления вычетов применим формулу, где , .

Таким образом, .

Задание 13. Вычислить интегралы с помощью вычетов.

а) ;

б) ;

в) .

Решение.

а) Сформулируем правило, позволяющее вычислять несобственные интегралы от рациональной функции действительного переменного с помощью теории функций комплексного переменного:

Пусть  - рациональная функция, , где  и  - многочлены степени  и  соответственно. Если функция  непрерывна на всей действительной оси и , т.е. степень знаменателя по крайней мере на две единицы больше степени числителя, то

где  означает сумму вычетов функции  по всем полюсам, расположенным в верхней полуплоскости.

Так как подынтегральная функция  четная, то =. Построим функцию , которая на действительной оси (при ) совпадает с подынтегральной функцией . Особые точки функции  - это точки  и . Из них в верхней полуплоскости находится точка , которая является полюсом второго порядка. Вычет функции  относительно полюса  равен =. Так как в верхней полуплоскости только одна особая точка, то . Следовательно, =.

б) Сформулируем правило, позволяющее вычислить рассматриваемый несобственный интеграл с помощью теории функций комплексного переменного:

Пусть  - рациональная функция, , где  и  - многочлены степени  и  соответственно. Если функция  непрерывна на всей действительной оси, ,  - произвольное действительное число, то

;

где  означает сумму вычетов функции  по всем полюсам, расположенным в верхней полуплоскости.

Так как подынтегральная функция  является четной, то =. Построим функцию = такую, что  на действительной оси (при ) совпадает с : . Отметим, что при  справедливо равенство . Функция  имеет в верхней полуплоскости полюс первого порядка в точке . Вычет функции   относительно этого полюса равен =. Следовательно, = и =.

в) Сформулируем правило, позволяющее вычислить определенный интеграл функции, зависящей рационально от тригонометрических функций с помощью теории функций комплексного переменного:

Пусть  - рациональная функция аргументов  и ,  и функция  непрерывна внутри промежутка интегрирования. Полагаем , тогда , , , . В этом случае

=

где  есть сумма вычетов функции  относительно полюсов, заключенных внутри окружности .

В рассматриваемом интеграле применим подстановку  и после преобразований получим: =. Внутри круга радиуса 1 с центром в начале координат содержится только одна особая точка подынтегральной функции  - это точка , которая является полюсом второго порядка. Вычет функции  относительно точки   равен =. Следовательно, =.

Вычисление криволинейного интеграла II рода.

Пусть дуга AB кривой  задается параметрически: x = x(t), y = y(t), z = z(t) и точке A соответствует значение параметра , а точке B – значение . Тогда:

В частном случае плоского задания кривой , например, в виде функции  от точки  до точки , интеграл II рода вычисляется по формуле:

Примеры: 

Вычислить:

 1)

2)