Детский электромобиль JAGUAR

Детский электромобиль JAGUAR

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат


Математика. Примеры решений контрольной, курсовой, типовых заданий Математика

Разложение матрицы в произведение простейших

 Пусть  – некоторые матрицы. Введём следующее обозначение, предполагая при этом, что произведение в правой части существует,

.

Предложение 1.5. Любую ненулевую матрицу из  можно представить в виде произведения

,  (1.22)

где , – элементарные матрицы порядка , – элементарные матрицы порядка , и матрица  имеет вид (1.21).

  ◄ В силу предложения 1.4 существует конечное число строчных и столбцовых элементарных преобразований, приводящих матрицу   к виду . Так как проведение одного строчного элементарного преобразования в матрице  равносильно умножению этой матрицы слева на некоторую элементарную  матрицу порядка , а проведение в  одного столбцового элементарного преобразования равносильно умножению матрицы  справа на некоторую элементарную матрицу  порядка , получаем матричное равенство

.  (1.23)

Матрицы  обратимы, а обратные им матрицы являются элементарными матрицами того же порядка. Поэтому, вводя обозначения

,

,

и умножая обе части равенства (1.23) в соответствующем порядке на матрицы   слева и на матрицы  справа, получаем

,

т.е. равенство (1.22). ►

Пример 8. разложить матрицу

в произведение простейших.

 ◄ Элементарными преобразованиями приводим матрицу  к виду ,

.

Проводим эквивалентную цепочку элементарных преобразований, умножая матрицу   слева на элементарную матрицу порядка 2, отвечающую элементарному преобразованию , и умножая её справа на элементарные матрицы порядка 3, отвечающие элементарным преобразованиям , , , . В результате получаем, что

.

Определяя обратные элементарные матрицы (см. свойство 4 элементарных преобразований) и умножая на них в соответствующем порядке последнее равенство, получаем, что

. ►

 Следствием предложения 1.5 является критерий обратимости квадратной матрицы.

Задание 8. Найти все лорановские разложения данной функции  по степеням . Указать главную и правильную части ряда.

а) =, ;

б) =, .

Задание 9. Функцию = разложить в ряд Лорана в окрестности точки .

Задание 10. Для функции  найти изолированные особые точки, провести их классификацию, вычислить вычеты относительно найденных точек.

а) =;

б) =.