Детский электромобиль JAGUAR

Детский электромобиль JAGUAR

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат


Математика. Примеры решений контрольной, курсовой, типовых заданий Математика

Поверхностный интеграл первого рода

Пусть f(x,y,z) - функция, непрерывная на гладкой поверхности S. (Поверхность называется гладкой, если в каждой её точке существует касательная плоскость, непрерывно изменяющаяся вдоль поверхности). Производя относительно поверхности S и функции f(x,y,z) действия, подобные действиям при составлении суммы (1), составим сумму

где  п - число частей, на которые разделена поверхность S; произвольная точка, взятая в i -ой части; ΔSi - площадь i -ой части.

Поверхностный интеграл первого рода от функции f(x, у, z) по поверхности S определяется как предел

Поверхностный интеграл 1 -го рода обладает такими же свойствами, как и другие, рассмотренные интегралы. Интеграл не зависит от выбора стороны поверхности интегрирования.

Чтобы вычислить поверхностный интеграл первого рода, его нужно преобразовать в двойной интеграл с использованием уравнения поверхности S.

Так, если поверхность S задана уравнением z= F(х,у), то дифференциал площади определяется по формуле

Поверхностный интеграл по S равен двойному интегралу по области Dxy, которая является проекцией поверхности S на координатную плоскость хОу:

С помощью поверхностного интеграла первого рода можно вычислить:

1) площадь поверхности S

2) массу материальной поверхности с распределённой плотностью

3) координаты центра масс, моменты инерции материальной поверхности вычисляются по формулам, аналогичным (6) и (7).

Пример 3.

 Вычислить массу поверхности S с распределённой плотностью

μ = 4- z. Поверхность задана уравнениями

Рис.9- к примеру 3

РЕШЕНИЕ Поверхность S - часть цилиндрической поверхности с образующей, параллельной оси Ох (см. рисунок 22), она однозначно проектируется на плоскость хОу в прямоугольную область

Поверхность задана уравнением, которое запишем в виде

и определим дифференциал площади

ТЕОРЕМА. Если

функция ,  – дифференцируемая в точке , , т.е. , причем ;

функция ,  – дифференцируемая в точке , , т.е. , причем ;

функция , , где

  – дифференцируемая в точке , где , ,
т.е. , где , причем ,

то сложная функция  дифференцируема
в точке .

Доказательство. Пусть , . Тогда
последовательно имеем

, где , , т.е. ;

аналогично .

Используя условие теоремы, можно записать

, поскольку

.

Здесь  в силу дифференцируемости функций ,  и  по условиям теоремы.

Заметим, что число

  –

производная рассматриваемой сложной функции  в точке .