Математика. Примеры решений контрольной, курсовой, типовых заданий. Тема: Интегралы

 Детский электромобиль JAGUAR

Детский электромобиль JAGUAR

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Инженерная графика
Машиностроительное черчение
Физика
Электротехника
Выполнение курсовой, контрольной работы
Законы Ома и Кирхгофа
Постоянный электрический ток
Молекулярная физика
Колебания
Термодинамика
Математика
Курсовая работа
Вычисление интегралов
ПЕРВЫЙ ПРИНЦИП ТЕРМОДИНАМИКИ
Тепловые конденсационные
электрические станции
ТУРБИНЫ
КОНДЕНСАТОРЫ
ПАРОГАЗОВЫЕ УСТАНОВКИ
АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ
ВОСПРОИЗВОДСТВО ЯДЕРНОГО ГОРЮЧЕГО
ПЕРСПЕКТИВЫ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ
МАГНИТОГИДРОДИНАМИЧЕСКОЕ
ПРЕОБРАЗОВАНИЕ ЭНЕРГИИ
ТЕРМОЭЛЕКТРИЧЕСКИЕ ГЕНЕРАТОРЫ
ЭЛЕКТРОХИМИЧЕСКИЕ ГЕНЕРАТОРЫ
ГЕОТЕРМАЛЬНЫЕ ЭЛЕКТРОСТАНЦИИ
ИСПОЛЬЗОВАНИЕ ВОДНОЙ ЭНЕРГИИ ЗЕМЛИ
НЕТРАДИЦИОННЫЕ ИСТОЧНИКИ
Солнечные электростанции
ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ
ВРЕДНОЕ ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ
 

Вычисление определенного интеграла

Приложения определенного интеграла Площадь плоской криволинейной трапеции. Пример. Вычислить площадь фигуры, ограниченной линиями: .

Вычисление длины дуги кривой. Пример. Вычислить длину дуги кривой: , между точками пересечения с осями координат. Решение. Данная кривая задана в параметрическом виде, то есть x и y зависят от параметра t. Поэтому, чтобы построить точку с координатами (x,y) нужно задать некоторое значение параметра и потом посчитать x и y .

Тройной интеграл в цилиндрических и сферических координатах

Вычислить тройной интеграл , где

Вычислить тройной интеграл , где

С помощью тройного интеграла наряду с другими величинами можно вычислить

Применение тройных интегралов. Масса неоднородного тела

Тройной интеграл равен произведению значения подынтегральной функции в некоторой точке области интегрирования на объем области интегрирования, т. е.

Цилиндрические координаты

Вычислим объем шара радиуса R. В этом случае подынтегральную функцию надо взять равной 1, и мы получим

Объём цилиндрического тела. Двойной интеграл. Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D.

Вычисление двойного интеграла в декартовых координатах

Двойной интеграл в полярных координатах

Тройной интеграл в цилиндрических координатах Цилиндрические координаты при вычислении тройного интеграла удобно применять тогда, когда область V проектируется на одну из координатных плоскостей в круг или часть круга.

Криволинейный интеграл первого рода

Вычисление криволинейных интегралов 1-го рода

Криволинейный интеграл второго рода Пусть по кривой MN, расположенной в плоскости хОу, движется материальная точка Р (х, у ), к которой приложена сила F , изменяющаяся по величине и направлению при перемещении точки. Физическая задача вычисления работы силы  при перемещении точки Р из положения М в положение N приводит к понятию криволинейного интеграла второго рода.

Вычислить криволинейный интеграл первого рода

Формула Грина. Условие независимости криволинейного интеграла второго рода от вида пути интегрирования

Поверхностный интеграл первого рода Пусть f(x,y,z) - функция, непрерывная на гладкой поверхности S. (Поверхность называется гладкой, если в каждой её точке существует касательная плоскость, непрерывно изменяющаяся вдоль поверхности).

Поверхностный интеграл второго рода К понятию поверхностного интеграла 2-го рода приводит физическая задача о вычислении потока жидкости через некоторую поверхность S. При этом, в каждой точке поверхности S задаётся векторная функция (x,y,z) скорости жидкости. Поверхность S называется двусторонней, если нормаль к поверхности при обходе по любому замкнутому контуру, лежащему на поверхности S, возвращается в первоначальное положение. Сторона поверхности S задаётся выбором направления нормали к поверхности, в этом случае поверхность называется ориентированной.

Изобразить на плоскости фигуру D. Вычислить массу пластины О с поверхностной плотностью распределения μ=μ(х, у). Рекомендуется использовать полярную систему координат.

С помощью двойного интеграла найти площадь фигуры, ограниченную заданными линиями.

Функция нескольких переменных и ее частные производные

Полное приращение и полный дифференциал ФНП

Частные производные ФНП, заданной неявно

Экстремумы ФНП Локальные максимумы и минимумы ФНП Говорят, что функция z = f (x, y) имеет локальный максимум в точке (x0, y0), если существует окрестность точки (x0, y0), в которой выполнено неравенство f (x0, y0) > f (x, y) для всех точек (x, y) из этой окрестности, отличных от (x0, y0): .

Скалярное поле. Градиент. Производная по направлению

Функции комплексной переменной Определение и свойства функции комплексной переменной Пусть даны две плоскости комплексных чисел и на первой – множество D комплексных чисел z = x + iy, где i – мнимая единица (i2 = –1), на второй – множество G комплексных чисел w = u +iv.

Пример Проверить аналитичность ФКП .

Вычисление двойного интеграла в декартовых координатах

Вычисление тройного интеграла в декартовых координатах

Криволинейный интеграл II рода (по координатам)

Векторное поле Поток векторного поля через поверхность

Потенциальные и соленоидальные векторные поля Ротор векторного поля

Решение примерного варианта контрольной работы

Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0.

Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1, x + y = 3. 

Поверхность задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.

Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i.

Задача .  Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Вычислить работу силы  при перемещении точки приложения силы вдоль заданной кривой L:  от точки B до точки C, если значения параметра t в точках B и C заданы: .

Задача.  Дано векторное поле  и уравнение плоскости d: 3x + y + 2z – 3 = 0. Требуется: найти поток поля  через плоскость треугольника АВС где А, В, и С – точки пересечения плоскости d с координатными осями, в направлении нормали плоскости, ориентированной «от начала координат»; построить чертеж пирамиды ОАВС, где О – начало координат; используя формулу Остроградского-Гаусса, вычислить поток поля  через полную поверхность пирамиды ОАВС в направлении внешней нормали.

Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

ПРИМЕР Подвести под дифференциал . РЕШЕНИЕ. Последовательно проведем следующие преобразования: . Воспользуемся формулой  при  и получим окончательно . Но тогда .

Интегрирование тригонометрических функций вида

Интегрирование по частям ПРИМЕР 1. Вычислить . РЕШЕНИЕ. Выберем ,  и проведем вычисления согласно (*) (обращаем внимание на возможный вариант записи этих вычислений).

Иногда формула позволяет искомый интеграл выразить через некоторые функции и этот же интеграл. Полученное равенство является уравнением относительно искомого интеграла. Решив это уравнение, вычислим интеграл. Интегралы такого типа называют возвратными.

Метод замены переменной (интегрирование подстановкой)

Интегрирование дробно-рациональной функций

ПРИМЕР . Вычислить . РЕШЕНИЕ. Рационализируем интеграл заменой . Тогда ,  и . Выделим целую часть, правильную дробь разложим на сумму простейших дробей

Диффенцируемость ФНП

Дифференциалы высших пррядков ФНП

Функции нескольких переменных ПРИМЕР . Выразить объем  цилиндра, радиус которого , высота , через эти переменные. Указать область определения функции. Ответ. , область определения – часть плоскости :

Диффенцирование неявно заданной функции

Локальный экстремум ФНП Различают несколько постановок задачи на нахождение экстремума ФНП   в зависимости от вида множества  – множества допустимых аргументов . При этом под символом  можно понимать максимум () или минимум (), но чаще решается задача минимизации ФНП, поскольку .

Интегрирование функций нескольких переменных С размерностью фигуры связано интуитивно понимаемое понятие мера фигуры (сокр. ). Теория меры множества включает понятия: "спрямляемость" дуги", "квадрируемость" области,
"кубируемость" тела, устанавливая, в частности, необходимые и достаточные условия их существования.

Некоторые свойства интеграла ФНП

Геометрические свойства интеграла ФНП

Некоторые механические примложения интеграла ФН Масса фигуры (отрезка, дуги, плоской фигуры, части криволинейной поверхности, тела)

Вычисление интеграла ФНП. Решение типовых задач

Производная функции в точке

Обратная функция , ее свойства ПРИМЕР. Для функции найти обратную функцию; рассмотреть графики прямой и обратной функций.

ПРИМЕР. Вычислить производную функции  на ОДЗ. РЕШЕНИЕ. Можно дифференцировать последовательно: сначала логарифмированную функцию, затем по формулам производной дроби и произведения. На проще сначала выражение прологарифмировать, а затем уже дифференцировать.

Правило Лопиталя применяется только для раскрытия неопределенностей.