Детский электромобиль JAGUAR

Детский электромобиль JAGUAR

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат


Примеры расчетов по электротехнике. Выполнение курсовой, контрольной работы Примеры расчетов по электротехнике. Выполнение курсовой, контрольной работы

Сигналы с полосовыми спектрами.

Если сигнал S(t) непрерывный, имеет полосовой спектр с шириной DF1=f1-f2, то его можно представить в виде ортогонального разложения следующего вида :

  (46)

где w0=2p(f1+f2)/2 - среднее значение угловой частоты спектра сигнала; Dt=1/2DF1; S(k/DF1); j(k/DF1) - отсчеты амплитуды и фазы сигнала в моменты tk=kDt. Из формулы видно, что для сигналов с полосовыми спектрами необходимо через интервал дискретизации отсчитывать мгновенные значения не только амплитуд, но и фаз. Так, в частности, дискретизируют однополосные колебания - сигналы с полосовыми спектрами. 

Основные особенности ортогонального разложения Котельникова вида (46) следующие : базисная система включает совокупность ортогональных функций отсчетов, каждая из которых представляет собой модулированное по амплитуде колебание с несущей частотой w0 и огибающей, определяемой функцией gk(t); помимо отсчетов амплитуд берутся отсчеты фаз; если длительность сигнала Т, то число отсчетных точек n=T/Dt=2TDF1.

В целом, все ортогональные разложения Котельникова - теоретическая основа большинства методов дискретной передачи непрерывных сигналов. Они позволяют с единых позиций рассматривать передачу как дискретных, так и непрерывных сигналов.

1.4.3. Теорема отсчетов в частотной области.

При анализе сигналов с непрерывными спектрами часто бывает необходимо представить сигнал с помощью частотных выборок спектральной функции , а не временных выборок функции S(t).

Для функции  можно составить ряд, аналогичный выражению (44), на основании взаимной заменяемости переменных t и w в паре преобразований Фурье (36), (37). Применительно к выражению (44) это означает, что t следует заменить на w, 2W=2pF на Т, Dt=1/2F на Dw=2p/T.

Таким образом получаем

  (47)

Расстановка частотных выборок иллюстрируется следующим рисунком.

Если ранее временной интервал между двумя соседними выборками не должен был превышать 2p/2W, то теперь частотный интервал не должен превышать 2p/T. При ширине спектра 2W, охватывающей область частот -W<W<W, число выборок равно 2W/Dw=2FT, т.е. как и при представлении сигнала рядом (44).

В общем случае выборки  являются комплексными числами и в каждой отсчетной точке на оси частот должны быть заданы два параметра - действительная и мнимая части , или модуль и аргумент. Таким образом общее число параметров получается вдвое большим, чем при временном представлении сигнала, когда выборки S(k/2F) - действительные числа. Избыточность представления сигнала в частотной области легко устраняется, если учесть, что   и  являются комплексно-сопряженными функциями, так что задание одной из них однозначно определяет другую. Таким образом, спектр сигнала полностью характеризуется совокупностью комплексных выборок, взятых только в области положительных частот, и число независимых параметров n=2FT, как и при представлении сигнала во временной области.