Детский электромобиль JAGUAR

Детский электромобиль JAGUAR

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат


Примеры расчетов по электротехнике. Выполнение курсовой, контрольной работы Примеры расчетов по электротехнике. Выполнение курсовой, контрольной работы

Баланс мощностей в параметрических цепях.

Рассматриваемая модель параметрической цепи реально представляет собой нелинейную цепь. А в цепи, содержащей нелинейный конденсатор, под воздействием напряжения генератора накачки и напряжения генератора сигнала, возникают колебания комбинационных частот

Чтобы представить себе как перераспределяется энергия информационного сигнала и сигнала накачки между комбинационным колебанием рассмотрим следующую цепь.

Пусть параллельно нелинейному конденсатору включены три цепи: цепь накачки, цепь сигнала и колебательный контур. Последний называют холостым контуром. Контур настроен на одну из комбинационных частот к, и, поэтому, можно принять, что других комбинационных колебаний не существует. Сумма средних мощностей колебаний сигнала PC, накачки PНК и комбинационной частоты PК должна быть равна нулю(закон сохранения энергии):

  (21)

Переходя в (21) от средних мощностей к энергиям в соответствии с (17) получим:  Подставляя сюда  находим, что

  (22)

Равенство (22) при произвольных  и  выполняется, если каждое слагаемое равно нулю (поскольку они не связаны общей частотой): Переходные процессы в нелинейных цепях описываются системой нелинейных дифференциальных уравнений, составленных для схемы цепи по законам Кирхгофа. Расчет переходных процессов в нелинейных цепях сводится, таким образом, к решению системы нелинейных дифференциальных уравнений. Значительные трудности, возникающие при таких расчетах, обусловлены сложностью решения нелинейных дифференциальных уравнений.

 

Переходя от энергии к средним мощностям получаем:

  (23)

Уравнения (23) выражают закон сохранения энергии в параметрических цепях. Их называют уравнениями Мэнли-Роу. И они являются частным случаем общей теоремы Мэнли-Роу о балансе мощностей в спектре колебания параметрической цепи, содержащей реактивную нелинейность (емкость или индуктивность). Теорема записывается в виде:

 

Они определяют законы распределения энергии сигнала накачки между гармониками выходного сигнала

Здесь Pmn - средняя мощность колебания на комбинационной частоте .

Запишем уравнения Мэнли-Роу для частного вида цепи, в которой существуют колебания только на четырех частотах:

 .

Для этого в (23) необходимо задать две пары значений m и n: m=1, n=1 и m=-1, n=1.

Тогда

  (24)

Эти формулы и устанавливают количественные соотношения (баланс) между мощностями колебаний различных частот.