Детский электромобиль JAGUAR

Детский электромобиль JAGUAR

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Законы Ома и Кирхгофа Метод узловых напряжений Последовательный колебательный контур Входная проводимость Параллельный колебательный контурКомплексные частотные характеристики цепей

Электротехника и теория цепей Законы Ома и Кирхгофа Анализ электрических цепей

Частотные характеристики резонансных цепей

 1. Цель работы

Практическое знакомство с частотными характеристиками резонансных цепей. Экспериментальная проверка правильности соотношений, описывающих характеристики простого и сложного колебательных контуров.

2. Основные теоретические положения

В теории цепей используют следующее определение резонанса: резонанс – это такой режим работы электрической цепи, содержащей емкости и индуктивности, при котором реактивные составляющие входных сопротивления и проводимости цепи равны нулю.. На резонансной частоте входные сопротивление и проводимость электрической цепи имеют чисто резистивный характер, а входной ток цепи совпадает по фазе с приложенным напряжением.

Простейшей электрической цепью, в которой наблюдается явление резонанса, является одиночный колебательный контур, представляющий собой замкнутую цепь, состоящую из конденсатора и индуктивной катушки. В зависимости от способа подключения источника энергии, различают

последовательный колебательный контур (источник энергии включен последовательно с конденсатором и индуктивной катушкой) Магнитные цепи

параллельный колебательный контур (источник энергии подключен параллельно реактивным элементам).

Для расчета параллельного колебательного контура часто используют эквивалентную схему, в которой индуктивная катушка представлена последовательной схемой замещения (рис. 6.1).

Рис. 6.1. Схема замещения простого параллельного контура

 

Комплексное входное сопротивление параллельного колебательного контура, в соответствии с рис. 6.1, равно:

Ограничимся, случаем, когда частота внешнего воздействия близка к резонансной и элементы контура имеют высокую добротность (pL >> R). Тогда

Здесь  - характеристическое сопротивление последовательного колебательного контура, составленного из тех же элементов, что и рассматриваемый параллельный колебательный контур.

На резонансной частоте мнимая составляющая комплексного входного сопротивления контура должна быть равна нулю, что возможно только при

  L – 1/C = 0.

Условие резонанса токов в параллельном колебательном контуре, при высокой добротности элементов, имеет такой же вид, как условие резонанса напряжений в последовательном колебательном контуре, и, следовательно, частота резонанса токов совпадает с резонансной частотой последовательного колебательного контура, составленного из тех же элементов:

На резонансной частоте

входное сопротивление контура (резонансное сопротивление) имеет чисто резистивный характер и равно:

Z(0) = 2/R;

действующие значения токов ветвей контура одинаковы:

 IС = IL = U ;

где U — действующее значение напряжения на контуре;

добротность

 

Важнейшая особенность последовательного колебательного контура заключается в том, что амплитуда реакции контура на гармоническое воздействие существенно зависит от частоты. На резонансной частоте и в узком диапазоне частот около нее амплитуда отклика достигает наибольшего значения; на частотах, значительно отличающихся от резонансной, амплитуда отклика во много раз меньше максимального значения. Если на вход такого контура подать сумму гармонических колебаний различных частот, имеющих одинаковую амплитуду, то на выходе можно обнаружить, что амплитуда колебаний, частота которых близка к резонансной, значительно превышает амплитуду колебаний, частота которых отличается от резонансной. Контур как бы «пропускает» колебания одних частот и «не пропускает» колебания других частот. Способность электрической цепи выделять колебания отдельных частот из суммы колебаний различных частот называется избирательностью.

В идеальном случае отклик избирательной цепи должен иметь постоянное значение в пределах определенного диапазона частот, называемого полосой пропускания цепи, и быть равным нулю за пределами этого диапазона. АЧХ реальных избирательных цепей, в том числе и АЧХ последовательного колебательного контура, отличаются от характеристик идеальной избирательной цепи отсутствием резкой границы между диапазонами пропускаемых и задерживаемых (подавляемых) частот. Очевидно, избирательные свойства реальных цепей будут тем выше, чем ближе к прямоугольной будет форма их нормированной АЧХ.

Полоса пропускания реальных избирательных устройств условно определяется как диапазон частот, в пределах которого амплитуда отклика цепи не падает ниже уровня = 0,707 от максимального значения. На частотах, соответствующих границам полосы пропускания, амплитуда отклика составляет 0,7 от максимального значения, а потребляемая цепью активная мощность в 2 раза меньше максимальной.


Топологические  графы электрических цепей